그랜드 마스터 재단사를 이용하였을때 가죽끈을 만들면 확률에 따라 재료가 회수되는데 이 확률이 얼마고
몇개의 가죽을 자르면 대략 몇개의 가죽끈을 얻을수 있는가? 에대한 실험입니다.
한번만 실험하기에는 대표적으로 나타낼 수 없다고 판단하여 총 3번에대하여 실험 데이터를 얻고
마지막 결산을 내는 포스팅을 내도록 하겠습니다.
![](https://blog.kakaocdn.net/dn/bCjsOs/btqv7Y47t4O/lvaiqaKGKqBxVvaiB50Mz0/img.png)
![](https://blog.kakaocdn.net/dn/cdbz4t/btqv4Rz5lkw/GWvTrKWO3LQjUulm6EFjLK/img.png)
1. 먼저 150개의 최고급 가죽을 준비하였습니다.
![](https://blog.kakaocdn.net/dn/VlmxR/btqv8mdBwr5/jfq5KXwt7EGqOSkuCDZtnK/img.png)
2. 방직을 이용하여 재단을 합시다.
![](https://blog.kakaocdn.net/dn/MBhUN/btqv7hLj1Vu/PPqxahiAB6KzQZYci8BpoK/img.png)
3. 150개를 자른후 결과 입니다.
![](https://blog.kakaocdn.net/dn/bJnY7u/btqv5V9SyfM/3CWVk3tIAUm1cnX9ZUuKNK/img.png)
150개의 최고급 가죽끈을 얻고 75개의 최고급 가죽을 회수 받았습니다.
75/150 * 100[%] = 50% 의 회수율을 보이는것이 확인 되었습니다.
4. 그렇다면 150개의 가죽으로 얻을수 있는 가죽끈의 개수는 이론적으로 몇개 인가?
고등학교(?) 중학교(?) 시절에 배운 등비수열의 합을 생각 해보면 r = 1/2 이고 초기값 a = 150 이라고 하면
150 + 75 + 37.5 + ························ 이라고 생각하면 직관적이지 않기때문에
수열의 합 : a(1-r^n) / 1-r 여기에 r = 1/2를 대입하면 2a(1- (1/2)^n) 이 나오게 됩니다.
여기서 (1/2)^n n-> infinite(무한) 이면 0에 수렴하므로 2a라는 값을 얻게 됩니다.
a = 150 즉 300개의 가죽끈을 얻을수 있고 이론적으로 가죽의 2배만큼 얻을 수 있습니다.
과연 그런지 체크 해보았습니다.
한줄요약 : 그냥 이론상 두배정도 나옵니다
5. 진짜 (4)번의 식처럼 나오는가?
![](https://blog.kakaocdn.net/dn/ydOD4/btqv7gr8K0b/hkTm9NY9duy9ygmmOlvKSK/img.png)
302개가 생산되었군요!
(4)번식의 예상처럼 처음 준비한 가죽의 두배만큼의 가죽끈이 만들어졌습니다.
다음 실험은 250개의 가죽을 모아서 실험을 진행해보도록 하겠습니다.
'마비노기 > 실험 Data' 카테고리의 다른 글
[마비노기 실험] 핀즈 크래프트의 대 성공 확률에 대한 계산 #2 (0) | 2021.05.30 |
---|---|
[마비노기 실험] 핀즈 크래프트의 대 성공 확률에 대한 계산 #1 (0) | 2021.05.27 |
[마비노기 실험] 그랜드 마스터 재단사는 양털을 얼마나 회수할까? - 2편 (0) | 2019.06.29 |
[마비노기 실험] 그랜드 마스터 재단사는 양털을 얼마나 회수할까? - 1편 (0) | 2019.06.29 |
[마비노기 실험] 그랜드 마스터 재단사는 가죽을 얼마나 회수할까? - 2편 (0) | 2019.06.16 |